
Using Automatic Code
Generation

in the
 Attitude Control Flight Software

Engineering Process

David McComas

Stephen Andrews

James O’Donnell,Jr., PhD

12/3/98

2

Agenda

• Background
– Microwave Anisotropy Probe (MAP)

– Attitude Control Subsystem (ACS)

– MATRIXx tool set

• Software Development Process
– Analysis and Design

– Implementation

– Testing

• Lessons Learned

3

What is the Microwave Anisotropy
Probe (MAP) ?

• Spacecraft to measure properties of the cosmic
background radiation over the full sky

• Measurements will determine
– “Big Bang” parameters

– How and when galactic structures formed

• Maintain a halo orbit about the Sun-Earth
Lagrange point (L2) 1.5 million km from Earth

• Maintain a 0.464 rpm spin rate for science
data collection

4

What is the MAP Attitude Control
Subsystem (ACS) ?

• Onboard hardware and software responsible for
– Attitude Determination

– Attitude Control

– Failure Detection and Correction

• MAP ACS manages
– Control following separation from the launch vehicle

– Orbit maneuvers to get to L2 and to maintain L2 orbit

– Control of the 0.464 rpm scan

– Momentum unloading

5

MAP ACS Flight Architecture

IRU

Attitude
Control

Electronics

DSS

CSS

PCS

RWA

Autonomous
Star

Tracker

Mongoose Processor

1773 Bus

Software Bus

ACS
Task

Other
Tasks

Data
Packets

6

MAP ACS Sensor and Actuators

Inertial Reference Units (IRU)
Measure changes in MAP’s angular
position. Spacecraft body rates are derived
from the incremental angular measurements.

Digital Sun Sensor (DSS)
Provides accurate measurements (< 0.01o)
of the sun’s position within a 64 degree
square field of view.

Coarse Sun Sensors (CSS)
Provide coarse measurements (< 10o) of the
sun’s position. The CSSs are mounted to
provide complete sky coverage.

Autonomous Star Tracker (AST) Provides an estimated attitude derived from
star measurements.

Propulsion Control System (PCS) Provides external force and torque to the
spacecraft via hydrazine-fueled thrusters.

Reaction Wheel Assembly (RWA) Provides spacecraft attitude control via
three reaction wheels.

7

MAP ACS Operational Modes

Operational Mode Description

Sun Acquisition (SA)
Uses IRUs, CSSs, and the RWA to acquire
a sun-pointing, power and thermally-safe
attitude within 20 minutes from any initial
attitude.

Inertial (IN)
Uses IRUs, DSS, ST, and the RWA to
acquire and hold a fixed commanded
attitude.

Observing (OB)
Uses IRUs, DSS, ST, and the RWA to
perform a scanning pattern. Observing is
the only mode used for collecting science
data.

Delta-V (DV)
Uses IRUs and the PCS to perform
spacecraft maneuvers. Delta-V is used for
trajectory management to get to the Sun-
Earth L2 point approximately 1.5 million km
from the Earth (away from the sun) and for
L2 station-keeping.

Delta-H (DH) Uses IRUs and the PCS to perform
momentum unloading.

8

MATRIXx Tool Set

Block Diagrams
Simulations

System Build
Mathematical Engine
Signal analysis
Controls analysis
Plots

Xmath

• System Parameters (Xmath %VARs) are defined in Xmath and
 exported to System Build. These are used for FSW tables and commands.

Model
Files

MathScripts
Data Files

9

SystemBuild Environment

• SuperBlocks are hierarchical objects
– Provide logical structure

– Contain other blocks

• SuperBlock timing attributes
– Discrete, Continuous, Procedure, Triggered

• Procedure SuperBlock types
– Standard, inline, macro, interrupt, background, or

startup

Italicized SuperBlock attributes are being used by MAP for AutoCode

10

SystemBuild Environment

• Common functional blocks
– Trig functions, algebraic functions, and dynamic

systems functional blocks

• “Open” blocks include
– Algebraic Blocks

• Define outputs as the result of algebraic functions of
the inputs and block parameters

– BlockScript
• Limited structural programming environment using

FORTRAN-like language

– User Code Blocks (UCB)
• Import user written code

11

Code Generation Process

AutoCode
Process

model.h
model.c

modeltb.c

map.tpl

HiFi
Model

Math
Scripts

ACS Database

model_sim.c

sb.h
sb.c

• model is the model name supplied to AutoCode. For map “achifi” is used.
• sb is the SuperBlock name defined in the HiFi.
• model_sim.c contains any non-FSW code. E.G. UCB wrappers.
• Process

• Load HiFi model
• Execute MathScript files to define Xmath variables
• Run AutoCode to generate the code

sb.h
sb.c

sb.h
sb.c

12

Code Generation Template (TPL) File

• Extended ISI’s TPL file (renamed to map.tpl) to
– Create separate header file and source file for each

SuperBlock

– Create model_Init() and model_Dispatch() functions
to clarify interface and provide placeholder for
customized code

• “Closed” automatic code generation
– ISI supplied TPL libraries generate the code

– @declare_percentvars()@ generates all of the
%VAR declarations

13

Software Development Process

High Fidelity Simulation
(HiFi)

High Fidelity Simulation
(HiFi)

MATRIXx
DocumentIt

MATRIXx
AutoCode

Algorithms

FSW Unit

Manual Code

ACS FSW
Requirements
Specification

Requirement Analysis

FSW Load Image
FSW Load Image

Unit Verification
Method #1

Unit Verification
Method #3

FSW Design HiFi Design

FSW Unit

Unit Verification
Method #2

Build Test
Build

Validation
Performance
Verification

14

Forces Driving the
Automatic Code Scope

• Minimize risks and maintain schedule

• High algorithm-to-code ratio

• Low HiFi-to-FSW architectural coupling
– No ground command handlers

– No software bus interfaces

– No FDC notification, or asynchronous event message
generation

15

Defining the
Automatic Code Scope

Attitude
Determination

Attitude
Error

Control
Law

Actuator
Output

Sensor
Input

Sensor
Hardware

Actuator
Hardware

Controller Subsystem

Command
Generation

Mode
Management

Pos & Rates

Estimated
Attitude

Commanded
Attitude

16

Consequences of the Design

• FSW requirements for HiFi AutoCode SuperBlock
– FSW commanded and computed values supplied as inputs

 to top-level procedure SuperBlock

– FSW telemetry and onboard computation needs define

 required outputs from top-level procedure SuperBlock

– Any non-commanded ground modifiable parameter must

 be defined as a %VAR for inclusion into a FSW table

• Single rate system so no need to use AutoCode’s
scheduled-subsystem option

• Relatively simple HiFi interface to be managed by
manual FSW

17

HiFi Implementation

ACS
SuperBlock

Models
SuperBlock

ACE
SuperBlock

Non-AutoCode
ACS

SuperBlock

AutoCode
ACS

SuperBlock

Command
Processing
SuperBlock

Attitude
Error

SuperBlock

Attitude
Control

SuperBlock

18

Manual Flight Code Implementation

Controller
achifi_Input
...
New()
Delete()
Execute()
Init()
MonitorPerformance()
...

RWAController

achifi
achifi_Output
...

achifi_Init()
achifi_Dispatch()

PCSController

SA
Controller

IN
Controller

OB
Controller

DV
Controller

DH
Controller

Only the base controller
class calls achifi functions

19

Manual Flight Code Evaluation

• Object-Oriented Design (OOD) implemented in C

• AutoCode dependencies encapsulated by base
controller class

• achifi viewed as a single object
– Two member functions: achifi_Init() and

achifi_Dispatch()

– achifi_Output treated as read-only output by other FSW
subsystems

• OO controllers resulted in small easy to test
functions

20

Automatic Code Evaluation

• Non-ANSI C function prototypes
– Compiler warnings a nuisance, but no errors due to non-

ANSI compliance

• Non-inline SuperBlocks result in code about twice as
long as equivalent manual code. Inefficient but . . .
– Team opted for separate files for each function (couldn’t

use inline attribute) for easier FSW configuration and
maintenance

– MAP has plenty of CPU and memory resources

– Manageable file sizes and code is relatively easy to follow

• Inline comments reference SystemBuild block
names/ID for traceability

21

Automatic Code Evaluation

• A 1 second delta-time is hard coded
– Manually modified generated code to use computed delta

time

• Two SuperBlocks did not result in variables being
used for %VARs
– Designed workarounds in HiFi; No manual code changes

• Flight tables require contiguous data, but Xmath
%VAR partitions do not translate to C structures
– Output %VARs to a separate file and used linker scripts to

ensure contiguous data storage; No manual code changes

• Team has verified automated code correctly
implements the HiFi design

22

Lessons Learned -
Process Improvements

Analysis

Performance
Verification

Development
• Algorithms
• Unit Test
 Data

Flight
Software

Performance
Data

Test
Results

Build
Test

23

Lessons Learned -
Process Improvements

• Improved configuration management
– Synchronized HiFi and FSW builds

– Synchronized HiFi and FSW parameter definitions

• Improved communication
– Analysts integrated into all phases of FSW

– Adopted naming conventions for HiFi and FSW

– MathScripts (next slide) documented HiFi tests

• Improved unit testing
– Similar HiFi and FSW designs enabled better test

data flow

24

Process Improvements
• Improved automation

– MathScript (Xmath command files) driven HiFi
simulation

– Graphical menus for easy plot manipulation

– Automated build test plot generation

• Consistent and efficient data analysis

• Improved performance verification
– Generation of MathScript files from build test

procedures and test data

• Many process improvements were the result
of the entire tool set, not just AutoCode

25

Measuring
Process Improvement

• Indicates MAP has been more productive
but…
– Metrics are limited to total developer time

charged to a project; not activity specific

– No metrics for analysts or build testers

– MAP production rate is inflated
• Automatic code is less efficient and 5,356 of MAP

LOC (31%) are automatically generated

Lines Of Code(LOC) Spacecraft Man Years (MY) LOC/MY
33,318 XTE 13.8 2414
17,525 MAP 6.1 2872

